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This paper  descr ibes further developments of a  Monte Carlo var iance reduction technique 
which was originally devised by  Chorin in 1971.  The  basic idea of expanding the estimator 
using orthonormal Hermite polynomials as  basis functions has  now been  extended by the 
authors to include: (i) multi-parameters, (ii) symmetr ized estimators of increased efficiency, 
and  (iii) an  adapt ive series selection algorithm so that only those coefftcients determined with 
suffkient precision are retained in the Hermite polynomial expansion of the estimator. The  so- 
called Tri-Symmetric Chorin (TX) estimator is descr ibed in detail and  computat ional results 
obtained using the adapt ive algorithm are presented for 6- and  12.parameter problems. 

INTRODUCTION 

For mu lti-parameter problems, Monte Carlo computations are frequently 
performed in order to obtain a  statistically realistic simulation while accepting, as a  
concomitant restriction, the rather slow convergence of the desired estimates to their 
true values. As a  result, a  wide variety of procedures have been  developed for 
reducing the error variance in Monte Carlo calculations. 

A particularly simple and  straightforward technique was proposed by Chorin [ 1  ] 
in 1971; subsequently this method has been  revised and  improved by the authors 
[2,3]. The  principal extensions have been  to include mu ltiparameter simulations [2], 
symmetrized estimators of increased computational efficiency [3], and  an  adaptive 
series selection algorithm to refine the general ized Hermite polynomial expansion of 
the estimator [3 and  this paper]. 

The  idea of using stochastic series to achieve variance reduction is not new. An ex- 
amp le is the orthonormal function method of Ermakov and  Zolotukhin [4, 
pp. 69-73). The  novelty of the Chorin technique lies in the fact that it is a  
straightforward, two-step procedure which can be  readily implemented on  the com- 

218  
0021-9991/80/ l  10218-24502.00/O 
Copyright 0 1980 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



No
m

in
al

 
Va

lu
es

 

Ra
nd

om
 

+ 
In

vu
ts

 
x 

Si
m

ul
at

io
n 

Pr
og

ra
m

 

St
an

da
rd

 
M

on
te

 
St

at
is

tic
s 

ca
t-1

0 
Ou

tp
ut

 - 
(S

am
pl

e 
Av

er
ag

es
 

- 
an

d 
Re

fin
ed

 
M

on
te

 

Di
st

rib
ut

io
n 

Ca
rlo

 
ou

tp
ut

 
Va

ria
bl

es
) 

* 

1 

M
od

el
 

Ge
ne

ra
tio

n 
M

od
el

 

(D
ev

el
op

 
Co

m
pl

et
e 

Se
t 

Ev
al

ua
tio

n/
Va

lid
at

io
n 

'--
t 

of
 

He
rm

ite
 

Po
ly

no
m

ia
l 

N 
(Z

er
o 

Po
or

ly
 

Es
tim

at
ed

 

Co
ef

fic
ie

nt
s)

 
+ 

To
1 

- 
Co

ef
fic

ie
nt

s)
 

m
 

FI
G

. 
1.

 
Da

ta
 p

ro
ce

ss
in

g 
pr

oc
ed

ur
es

 fo
r 

th
e 

or
di

na
ry

 a
nd

 r
ef

in
ed

 M
on

te
 C

ar
lo

-e
st

im
at

es
. 



220 HITZL AND MALT2 

puter. Further, the Chorin-type estimators have desirable convergence properties for 
large sample sizes and the exact Monte Carlo error variance can be easily evaluated. 

The basic approach implemented here to obtain variance reduction is illustrated in 
Fig. 1. A stochastic error model is generated using the existing data and “tuned” by 
comparing certain “normalized variance reduction discriminants” with a preset 
tolerance level. Provided a suitable system model can be identified (which is always 
the case except for very small data sets and very tight tolerance levels), improved es- 
timates of higher precision can be determined and variance reduction is assured. 

This paper is structured as follows. First, the fully symmetrized estimator, or the 
so-called Tri-Symmetric Chorin (TSC) extension of the basic Chorin (C) estimator, is 
developed. (The Symmetric Chorin (SC) estimator was derived in [2]). Next, it is 
shown that the Monte Carlo error variance for the TSC estimator is smaller than that 
for the C estimator under a/1 conditions. Then the adaptive algorithm is described 
and, finally, computational results are presented for the following two problems: 

1. A simplified three-dimensional (3-D) reentry trajectory simulation with six 
random variables. 

2. The Deployment Dispersion Function-a 12-parameter model for the dis- 
persion of coasting trajectories after separation from a post-boost vehicle. This 
problem was described previously in [2] but results using the symmetrized estimators 
(SC and TSC) and the adaptive option were not available then. 

Now, before closing this section, we would like to reproduce the following quota- 
tion from Halton [5, p. 471, as this captures an important aspect of the present work. 

The Monte Carlo method was developed for use on large electronic digital computers, 
and although it can be applied to pencil and paper calculations, its exponents have always 
worked close to computers, both in judging the usefulness of their techniques and in 
developing the theory of their subject. The study of the Monte Carlo method is one of the 
best examples of the creative use of computers as n research tool, and it is to be hoped and 
expected that future work will be in the same spirit. 

The particular relevance of this statement will be discussed in the later section on 
computational results. 

FULLY SYMMETRIZED EsnMAToR 

The basic Chorin estimator f * for the unknown function f is given by Eq. (15) in 
121 as 

where 

(a) Af, is an estimate of the residual f - E(f 1, 
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(b) f=f(x) is a function of a p-dimensional random vector x all of whose com- 
ponents have mean zero and variance one and are uncorrelated, 

(c) Qk(x) is the multi-parameter generalization of the usual orthonormal Her- 
mite polynomials @,Jx) appropriate to a single variable. 

Thus, the “corrector series” Af, is a zero-mean Hermite polynomial expansion 
modeling the stochastic fluctuations in f resulting from the random inputs xi. 

Following the notation in 121, the estimator f * is obtained by first splitting 
N = 2M statistically independent samples into two sets, 

s= 
1 
xi,i= 1,2 )...) M), 

S’ = (xi, i = 1, 2 )..., M}, 

and then using the set S’ to estimate the coefftcients 

Next, the set S is used to form the final estimate 

f * n_f*(s, S’) 

(2) 

given by Eq. (1) above. 
In order to make better use of the available samples, it was found by the authors 

[2,3] that the Chorin estimator could be symmetrized. By reversing the roles of the 
sample sets S and S’ and repeating the previous two-step procedure, two Chorin 
estimators 

f T =f*G S’), 
f :: =f *v, S) 

(5) 

are obtained. Their average then yields the symmetric Chorin (SC) estimate 

ff, =%fT +fT>, (6) 

which, as shown in Eqs. (26) and (34) of [2], has an asymptotic (large N) error 
variance equal to : that of the basic Chorin estimator. 

Even further improvements can be realized, however, by partitioning all N Monte 
Carlo samples into three statistically independent sets of M samples each (N = 3M). 
Thus, we append 

S” = (x7, i = 1, 2 ,..., M} (7) 
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to S and S’ given by Eq. (2) and form the three Chorin estimates 

f T =f *(ST s’), 

f; =f*(S’, S”), 

f :: =f *(S”, S). 
(8) 

Their average then defines the fully symmetrized, or tri-symmetric, Chorin estimate 

f&c = :CrT +f T +f T)* (9) 

Now, one of the main purposes of this section is to show that the three estimates 
f: in Eq. (8) are mutually uncorrelated so that, in contrast to the error variance for 
the SC estimate derived in [2], the exact error variance for the TSC estimator has no 
additional penalty term. 

The error variance for the TSC estimate is 

a:,,=3aSi+~(Cov[fT,fT] +Cov[fT,fT] +Cov[fT,fTl), 

where a& is the basic Chorin error variance given by Eq. (20) in [Z] as 

(10) 

A B 24 4B 
d,=jjy+ ==pNf (11) 

for any of the three individual Chorin estimates in (9). Note that the individual 
Chorin estimates each use a total of Ni samples with M, = $V, = +ZV. From the struc- 
ture of the estimates given in (8), 

cov[f:,f2*] =Cov[f:,f:l (12) 
so 

of,c = +J:, t ; cov[f:,fTl •t ; Cov[fT,fTl. 
Now, applying Eq. (1) three times, we have 

(13) 

with 

f T =3- 4, 
fr=f’-fvb, 
f; =$,, --A-j-& 

(14) 

(15) 
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Referring to Eq. (3), the individual coefficients are estimated as 

8; =fW), 

With these preliminaries, we first show 

COVKJ-: I = Jvx b-b1 (17) 

by applying the definition 

CovVTJTl = mwl - WI>’ 
and expanding the first term in (18), using (14), to get 

WTfTl = w1>’ - qfSfbl- kP &II+ J+fxdf~l~ 
where we note that 

(18) 

(19) 

E[3Pl= EL31 WY = uxf1)2 (20) 

since the basic Chorin estimator f * is unbiased. Next, using Eqs. (15) and (16), we 
obtain 

and 

E[S’ A-&] = f E[3’4] E[d$] = 0 (22) 
1 

since ,?Z[&k] = 0. Thus, the cross terms in Eq. (19) are zero and the desired result 
(17) follows from (IS), (19), and (20). 

In exactly the same way, we obtain 

cov[f~,fTl = W%fG’l~ 

Then, using Eqs. (15) once again, we find 

Cov[fT,fT]=~~E[a^l~~]E[d;]E[~i]=O 
1 1 

and 

Co~[f~,f~]=~~E[d;]E[d~~~]E[b'x]=O 
1 I 

(23) 

(24) 

(25 1 
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so that, finally, Eq. (10) becomes 

1 A 3B 
u&=-uf,=--+~ 

3 3Mi 9Mi (26) 

Consequently, for all A, B, and N, the Monte Carlo error variance for the TSC es- 
timator u&c is indeed smaller than that for the basic Chorin estimator. 

ADAPTIVE ALGORITHM 

In order to obtain the best possible results in Monte Carlo simulations using these 
advanced estimators, it is most important to assess which terms in the corrector series 
Af, given in Eq. (1) yield a net variance decrease. This is especially true if the dimen- 
sionality p is somewhat high, so that the Hermite series becomes rather large. In fact, 
it should be noted that the upper limit m for the orthonormal expansion of Af, in 
Eq. (1) is actually of the form m(m,p), where 

so 

m = highest order polynomial to be retained, 

p = number of parameters, 

Cm + P>! m(m,p) = ---. 
m!p! 

For example, if m = 3 (so we include linear, quadratic, and cubic terms) and p = 10, 
m(3, 10) = 286. 

The method we use for selecting which terms in Af, are important is referred to as 
the adaptive series selection algorithm. The label “adaptive” is used because the 
corrector series is automatically “tailored” for each value of N used in the computa- 
tions. This algorithm will be described here for the fully symmetrized TSC estimator 
but it has also been implemented for the other estimators C and SC. 

The Monte Carlo error variance u&c for the tri-symmetric Chorin estimator is 
given by Eq. (26), 

where A is the mean square remainder in the truncated Hermite series expansion 

cc m 
A= x a:=u*-xa: 

m+1 I 
(28) 
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and B is the sum of the error variances for the coeffkient estimates a^,, 

B=fb; with b: = Var [fQk] = Var [ak]. 

Inserting (28) and (29) into (26) 

since N = 3M. Using Eq. (30), we then define 

(29) 

(30) 

where we see immediately that variance reduction occurs for the kth term provided 
A, > 0. Thus, since the effect of individual terms can now be assessed, we refer to the 
quantity A, as the variance reduction discriminant. Finally, since both terms in 
Eq. (31) are positive, it has proven more convenient to consider instead 

d aM-‘b; 
k- 2’ 

ak 
(32) 

where, for variance reduction, dk < 1. This quantity dk is termed the normalized 
variance reduction discriminant. 

Now, since ai is the variance of the component a,@,(x) in the polynomial 
expansion off and (l/M) bi is the error variance for the M-sample estimate of the 
coefficient ak, we see that A, can be considered as representing the inverse signal to 
noise ratio squared (S/N)-’ so we define the adaptive series selection criteria 
(Tolerance) as 

To1 = (S/N))* (33) 

and require 

d,<Tol< 1. (34) 

This is the basis of the adaptive multi-parameter simulation results to be presented in 
the next section. 

COMPUTATIONAL RESULTS 

Simulation results using two model problems are presented now. The first is a sim- 
plified three-dimensional (3-D) reentry trajectory simulation with six random 
variables. This is an essential simplification of the full 6-D reentry trajectory simula- 
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tion [6] since the attitude motion of the spinning vehicle has now been removed and 
only a restricted 3-D computation giving the longitudinal (in plane) and lateral (out 
of plane) motions of the mass center has been retained. Also, the full simulation con- 
tains 32 random inputs while this reduced problem includes only the following six 
random input parameters: 

p, = AC,, = change in axial force coefficient due to nose shape 
change resulting from ablation, 

pz = 4 = roll orientation of AV (=p,J relative to the nominal 
trajectory plane (0 < # < 2n), 

p3 = W = initial reentry vehicle weight, 

~4=Csr = change in skin friction coefficient, 
ps = A W = weight loss during reentry, 
ps = A V = net lateral velocity increment resulting from boundary 

layer transition (laminar to turbulent flow). 

TABLE I 

Number of Terms Retained in Hermite Series Using Adaptive Series Selection Algorithm 
- 

Number of terms 
- 

m m(m, PI” Quantity N To1 SC TSC Figure No. 

1 7 
1 7 
2 28 
2 28 

2 28 

Reentry Simulation with p = 6 

DR 198 : 3 3 3a, b 
CR 198 f 3 2 5a, b 
DR 198 a 4 3 4a, b 
DR 198 ; 6 1 * 

CR 198 : 6 4 - 

Deployment Simulation with p = 12 

2 91 
2 91 
2 91 
2 91 
2 91 
2 91 

(1lY Y, 600 -h 8 6 6a, b 
z Yl 240 : 8 6 - 
* YI 360 : 9 8 - 
2 Yl 480 : II 10 - 

(11) 2 YI 600 ; II II la. b 
(63) YzY3 600 : 43 37 8a.b 

’ m(m,p) = total number of terms in Hermite series = (m + p)!/m! p!. 
‘Plots not included. 
‘Exact number of terms for full correction. 
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The principal objective of this simulation was then to assess the downrange and 
crossrange dispersions of the nominal impact point due to the combined (and 
coupled) effects of random perturbations in the previous six dominant error sources. 

Results for the normalized variance reduction discriminants zk are shown first in 
Figs. 2a and 2b for the SC and TSC estimators, respectively. These plots have been 
included here principally so that the following chronology can be described. Initially, 
it was desired to plot A,, A, ,... versus N but it was found that the individual A, varied 

SIMPLIFIED 3-D REENTRY SIMULATION (M=l) 

I .o 
I III I I I I I IAl I I I I I I I I I I 

NUMBER OF SAMPLE TRAJECTORIES N 

FIG. 2a. Normalized variance reduction discriminants Jk (k = 1,2,..., 6) for the SC estimate as a 
function of the number of trajectories N. Note that only the linear coefficients for parameters 3 and 4 are 
consistently estimated with suffkient precision (zk < 1) for use in the stochastic corrector series. 
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over several orders of magnitude. Hence, we were led to the idea of normalizing and 
Figs. 2a, 2b were obtained where we see vividly that only two parameters are fitted 
consistently in the linear corrector series. This then led to the concept of the adaptive 
tolerance level described in the previous section. And this sequence of events, we sub- 
mit, is exactly in the spirit of the comment by Halton quoted in the Introduction. 

Simulation results are presented next in Figs. 3a to 4b for the downrange impact 
point and in Figs. 5a, b for the crossrange impact point. In each case, estimates of the 
mean are presented in the “a” figure while the corresponding Monte Carlo error 

SIMPLIFIED 3-C REENTRY SIMULATI’dN CM=11 

2.0 / 
1. I 

NUMBER OF SAMPLE TRAJECTORIES v N 

FIG. 2b. Normalized variance reduction discriminants d;, (k = 1, 2,..., 6) for the TSC estimate as a 
function of N. Again, only parameters 3 and 4 are retained in the linear corrector series. 
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variances are given in the “b” figure. These latter figures can be interpreted in either 
of two ways. For a given N, the reduction in variance is immediately available while, 
for a given variance, the allowable reduction in sample size N is easily assessed. 

For all the figures presented in this paper, Table I summarizes the performance of 
the adaptive algorithm for various m , Tol, and N. In general, retaining fewer terms by 

SIMPLIFIED 3-D REENTRY SIMULATION CM=l.TOL=1/2) 

NUMBER OF SAMPLE TRAJECTORIES , N  

FIG. 3a. Estimates of the mean downrange impact position as a function of N for ail four 
estimators. Here, as in all the plots to follow, the symbols represent: o--Direct Estimate D, X-Chorin 
Estimate C, *--Symmetrized Chorin Estimate SC, .--Tri-Symmetrized Chorin Estimate TSC. These 
results were obtained with a linear corrector series of six terms and with the adaptive tolerance set equal 
to ;. 
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tightening the tolerance leads to decreased variance reduction together with somewhat 
“smoother” estimates of the mean for low values of N. Alternatively, loosening To1 to 
values near 1 can give, in some cases, negative Monte Carlo error variances [ 71 as a 
result of subtracting too many coefficients in Eq. (28). Thus, there is a necessary in- 
teraction between the analyst and the computer when choosing appropriate values for 
m and Tol. This is accomplished, most effectively, from an interactive terminal. 

SIMPLIFIED 3-D REENTRY SIMULI \T ION (M=l.TOL=1/21 

NUMBER OF SAMPLE TRAJECTORIES . N 

-- 

=zzz 

FIG. 3b. Variances for the four estimates shown in Fig. 3a. Note the superior performance (variance 
reduction) obtained with the two symmktrized estimators, SC and TSC, compared to the original Chorin 
estimator C. 



ADAPTIVE MONTE CARLO ESTIMATION 231 

The appropriate stochastic system models for the 3-D reentry simulation have been 
identified during these computations as 

DR = 845150 + 307.49 W- 101.93dC,,, 

- 48.49AC, A W  + 2.239@ A W), (35) 

CR = 0.213 + 33.1954 - 2.924AC, W- 5.243AC, AC,,, (36) 

SIMPLIFIED 3-D REENTRY SIMULATION CM=2.TOL=1/4) 

NUMBER OF SAMPLE TRAJECTORIES . N  

FIG. 4a. Estimates of the mean downrange impact position as a function of N for all four es- 
timators. Now the corrector series contains both linear and quadratic terms (total of 27) and the adap 
tive threshold has been tightened to 4. 
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for the TSC estimator using N= 198 (all the available sample trajectories), m = 2 
and To1 =i. For comparison, the expressions 

DR=845151+307.49W+159.82( Ay), (37) 

CR = 0.450 + 33.1954 (38) 

were obtained when the Tolerance was tightened to a. 

SIMPLIFIED 3-D REENTRY SIMULATION IM=2vTOL=1/41 

NUMBER OF SAMPLE TRAJECTORIES , N 

FIG. 4b. Variances for the four estimates shown in Fig. 4a. Comparing to Fig. 3b, we see that 
further variance reduction has indeed been achieved. 
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We now proceed to the second model problem-the so-called Deployment Disper- 
sion Function introduced earlier in [2]. The specific example investigated here is 

y=Ax+p, (39) 

where yT = [y,y,y,] is a 3 vector, xT= [x,x, ‘.. x,?] is a 12 vector whose 
components have mean zero and variance one and are uncorrelated, pT = [0 3 61 is a 
3 vector of mean values, and A is a (3 x 12) matrix with integer entries given by 
Eq. (55) in [2]. For this problem, both the means E[y/] and second moments E[yi], 

SIMPLIF ED 3-D REENTRY SIMULATION CM=l,TOL=1/21 

T 

I 

80 120 

NUMBER OF SAMPLE TRAJECTORIES . N  

I 

FIG. Sa. Estimates of the mean crossrange impact position as a function of N with a linear corrector 
series (m = 1) and the adaptive threshold Tel= ;. 
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E[ y,vj] {i = 1,2,3; j = 1,2,3; i #j} were determined using both the direct (D) and 
Hermite accelerated Monte Carlo estimators (C, SC, and TSC). However, because of 
its inferior performance relative to the symmetrized estimators, the basic C estimator 
was eliminated from the plots given in Figs. 6a to 8b. 

Examining these figures, we see that estimates of much higher precision have in- 
deed been obtained. Table I again summarizes the performance of the adaptive 
algorithm for this problem. Because of the known simple structure of this problem, it 
is quite interesting to investigate the form of the multi-parameter Hermite polynomial 
expansion determined by the adaptive algorithm during the course of the computation 
(i.e., as N increases). 

SIMPLIFIED 3-D REENTRY SIMULATION CM= 

NUMBER OF SAMPLE TRAJE 

. TOL=1/21 

I 

TORIES . N 

FIG. 5b. Variances for the four estimates shown in Fig. 5a. 
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For the linear function y, shown in Figs. 6a, b, successive determinations of the 
Hermite series using the TSC estimator with m  = 2 (intended over correction) and 
Tol = & (high precision) are 

<C3 = 5.943 + 2.986x, + 3.074x,, for N = 360, 

j3 = 5.98 1 + 2.95 lx, + 2.905x, + 2.892x, 
+ 2.862x,, for N= 480, 

(40) 

(41) 

*I-* 3-D LINEAR MODEL PROBLEM iM=2,TC~L=1/16] x++ 

L 
=nT 
--k-H-- 

0 120 240 360 480 600 
NUMBER OF SAMPLE TRAJECTORIES . N  

FIG. 6a. Estimates of the mean of yj as a function of N for the deployment dispersion function 
y = Ax + p. The exact value is E]v~] = 6.0. The Chorin estimator C has now been dropped for this ex- 
ample problem so only three curves remain. Note that for N ( 168, all estimates revert to the ordinary 
direct estimate D as no terms are retained in the stochastic corrector series while, for N > 360, the sym- 
metrized estimators indeed exhibit an acceleration toward convergence. 
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y^, = 6.009 + 2.8 10x, + 3.073x, + 2.869x, 
+ 2.168x,, + 2.957x,, for N = 600. 

These three estimates should be compared with the exact formula 

(42) 

y3 = 6 -I- x, + 2x, + 3x, + x, + 3x, + 2x, 
+ 3.5 -t 2x,, +x,, + 3x,,. 

*** 3-D LINEAR MODEL PROBLEM (M=2,10L=1/161 *x* 

i 
(0 
AM 

1 
1 
I 
'60 

TOI 

t 

I , 
---I 

\ I / 

480 600 
?IES . h: 

(43) 

FIG. 6b. Monte Carlo error variances for the three estimates shown in Fig. 6a. Note the resultant 
variance reductions with the SC estimator for N > 240 and with the TSC estimator for N > 288. This 
behavior is typical-the SC estimate yields a variance reduction earlier while the TSC estimate always 
achieves the smallest asymptotic variance as N-t to. 
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For the quadratic functions y: depicted in Figs. 7a, b, the corresponding evalua- 
tions are 

j; = 4.0576 + 0.9310x: + 1.8702x,x, + 2.3265x,x, 
+ 1.4350x,x,,, + 1.7526x,x, + 1.5772x,x,, 
+ 1.3423x,x, 0 at N= 360, 

9: = 4.0152 +0.8802x: + 1.1591~; + 0.6926~:~ 

+ 1.9179x,x, + 2.0637x,x, t 1.6380x,x,, 
+ 1.8172x,x, + 1.6898x,x,, + 1.3386x,x,, at N=480, 

++* 3-D LINEAR MODEL PROBLEM CM=2,TOL=1/41 *it+ 

120 240 360 4 
NUMBER OF SAMPLE TRAJECTORIES , N  

6 

(44) 

(45) 

FIG. 7a. Estimates of the mean of 9: as a function of N for the deployment dispersion function 
y = Ax + p. The exact value is E[ rf] = 4.0. Note, in particular, the superior performance of the SC 
estimator for N > 360. The complete corrector series here contains a total of 90 terms. 
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~7; = 4.0041 + 1.283 lx: + 1.0361x; + 1.1282x: 
+ 0.9619x;, + 2.0237x,x, + 2.1646x,x, 
+ 1.8042x,x,, + 2.03 14x,x, + 1.7588x,x,, 
+ 1.4 193x,x,, at N=600 

for the TSC estimator with m = 2 and To1 = 4. Again, the exact form is 

y: = (x, +x4 + x, + x,,y 
= x: + x: + x: + x:0 

+ 2[X,X, + X1X7 + XIX,, + X,X, +X,x,0 +X,x,,]. 

it** 3-D LINEAR MODEL PROBLEM IM=2.TBL=1/41 *I-* 

I 
360 
CTC 

(46) 

FIG. 7b. Monte Carlo error variances for the three estimates shown in Fig. la. Roughly an 8: I 
reduction in variance is achieved at N= 600. 
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*** 3-O LINEAR MODEL PROBLEM (M=2,TOL=1,‘2) x*x 

35 -. 

25 - 

NUMBER Oi 

t 
I 

240 
F s.L 

3 
,MPLE TRh:ECTORIES Y  

480 600 

FIG. 8a. Estimates of the mean of y2y, as a function of N for the deployment dispersion function 
y = Ax + p. The exact value is E[ y2y,] = 27.0. 

Finally, it is important to emphasize that, in all cases, these results were obtained 
automatically by the computer subject only to the preset input quantities m  and Tuf. 

CONCLUSIONS 

As shown both in theory and in numerical experiments, the symmetrized estimators 
described here have been able to furnish valuable reductions in Monte Carlo 
estimation errors. Furthermore, the adaptive series selection technique has proven to 
be an essential addition to these advanced Monte Carlo estimators. The adaptive 
algorithm is based on the fact that the variance reducing (or increasing!) effect of 
each term in the complete (and generally nonlinear) correction series can be isolated. 
This important result is obtained by inspection of the exact theoretical expression for 
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FIG. 8b. Monte Carlo error var iances for the three estimates shown in Fig. 8a. Roughly a  4  : 1  
reduct ion in var iance is achieved at N = 600.  

the estimator variance and  leads to the so-called variance reduction discriminant 
given by Eq. (31). 

We  consider the use of these orthonormal function space expansions to be  a  
definite advance in Monte Carlo computations since, in. general, both variance 
reduction and  system identification is provided. In particular, the further insights 
obtained from the additional processing of the basic Monte Carlo data should prove, 
in most cases, to be  of considerable importance. Since it is hoped  that others m ight 
apply these techniques to their problems, the present version of the computer program 
has been  documented [7]. 

F inally, it should be  emphasized that these advanced estimators were developed 
originally for application to mu lti-parameter trajectory simulations. In particular, es- 
timates of increased precision were desired for such quantities as range and  impact 
point. A future publication [8] will show the gains that can be  achieved when these 
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adaptive estimators are applied to actual multi-parameter boost and reentry trajectory 
computations. Presently, we have computational experience with realistic simulations 
involving 8, 17, 32, 35, and 40 random input parameters. 
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